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A procedure is described for a formal asymptotic expansion which realizes the transi- 
tion from a three-dimensional problem of the theory of elasticity in a thin layer to a 
problem of plate theory for bodies of periodic structure containing a system of periodical- 
ly distributed contacts. 

In practical applications, it is common for periodic bodies with systems of internal 
contacts (a body with a system of cracks occupying a fixed region was examined in [i]) to 
be realized in the form of thin plates and shells: reticular shells, cloths of different 
weaves, reinforced shells, etc. The periodicity of the structure of such bodies is the 
direct result of the technology used in their manufacture. The size of a cell of the struc- 
ture is comparable to the thickness of the plate. The unilateral contacts - also being a 
result of the manufacturing technology - obviously influence the mechanical properties of 
the constituent materials (examples are the different stiffnesses of a woven fabric in ten- 
sion and compression or the existence of a nonlinear stress-strain relation for a similarly 

structured mesh when made of linearly elastic materials). There is a fairly extensive 
literature on the question of the conversion of three-dimensional problems of the theory 
of elasticity to two-dimensional problems (see [2], for example). We will partially fol- 
low [3] in obtaining our expansion, while we will follow [i] (to the extent possible) in 
analyzing problems with unilateral constraints that are encountered in this context. In 
light of this, most of our attention will be focused on features of the problem that dif- 
fer from the features discussed in [i, 3]. 

Formulation of the Problem. We will examine a linearly elastic body (aijhZ (X/k) is the 
tensor of the elastic constants) with a periodic structure. The body occupies a thin (char- 
acteristic thickness s << i) region ~E" We use Pe to denote a cell of the structure (see 
Fig. i). We impose the standard conditions [4, 5] on the elastic constants: aijkz(y)~L~(R3), 
lla~jkzllLoo(n~)<OO;aijhz(y)eijeh~ra, ll{e~j}ll~>O for all {eij} ~ 0 (such that eij = eji) and 
for all y e R 3. 

The formalization of the conditions of unilateral contact have the following form [i, 
4]. Let the body be fastened to the surface F~ ~ (see Fig. i). We introduce the space of 
functions V---- {u ~ {HI(Qe)}~: u(x) = 0 on Fe~ Then the condition of unilateral ideal contact 
takes the following form [i, 4] in terms of the displacements ue 

u s ~ M ~ {u ~ V: [u �9 n] ~ 0 on the contact surfaces} (i) 

(n iisa normal to the contacting surfaces). Along with (i), we require satisfaction of 
its analog. The latter describes the condition of unilateral contact on a cell in terms 
of local variables y = x/e [I]: 

[u~{//r1(P1)}3: [u-n]~O on the contact surfaces and U(y) ~ 

(iS periodic with respect to (Yl, Y2) ~ S1 

Here, the square brackets denote a discontinuity (see [i]); S I is the projection of the 
cell PI on the plane Oyly 2 (see Fig. i); PI---- (i/e)Ps-----{Y =x/e: x~ P~}. As is known [I], 

M and M are closed convex sets. 

The displacements ue)of the body are found from the solution of the variational in- 
equality [ i, 4] 

,[ g(u - " f(u - v)d  (2) 
~8 re ~e 
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Fig. i 

for any v ~ M, where 

% = (l ie 3) %hl (x/e) uLl. ( 3 ) 

The f a c t o r s  ~ ~ and  E b i n  ( 2 )  d e t e r m i n e  t h e  o r d e r  o f  t h e  l o a d s  on t h e  e x t e r n a l  s u r f a c e s  
o f  t h e  p l a t e  and  t h e  body  f o r c e s .  The p r e s e n c e  o f  1 /~  s i n  ( 3 )  i s  c o n n e c t e d  w i t h  t h e  known 
estimate of the stiffness of the plate in bending [5]. 

Note i. The region of contact of the elements of the given body is not known before- 
hand. It is determined during the solution of the problem (problem with free boundaries [i, 
4]). 

If the external forces are made subject to the usual conditions f ~ CI(Ra), g ~ CI(R3), 

I l f [ I c ~ , l l g l ] c ~ m < ~  then problem (1)-(3) is solvable inM for any e > 0 [i, 4]. We will study 
the problem for E + 0. 

Formal Asymptotic Expansion. The formal asymptotic expansion of problem (1)-(3) will 
be constructed in accordance with [3] in the form 

of the solution 

u~ = u(O)(~) + euO)(~ y) + . . . .  ehu(k); 

the test function 

and  the stress 

r = - ~  lj + . . .  e v i i  �9 ~ y) + = 

(4) 

(5) 

( 6 )  

Summation is performed over repeating indices. Here, k = 0, i, ...; m = -3, -2, --i, 0, ...; 
x= (xl, x2); Y----x/e = (xje, x2/e, xJ~). All of the functions in the right sides (4)-(6)are as- 
sumed to be periodic with respect to Yl, Y2, with the cell S I. We designate w----u e- v. 
This function can be represented in the form w = ekw(k) (w(k) ----u(A) --v(h)). Let us insert (4)-(6) 
into (2), (3). Changing over to the variables v = (xl, x2, x3/e), [in which the region 
~g, with a thickness of the order of s, becomes the region ~i = {(xl, x2, Y~ = x3/E): ~ e 
~e}, with a thickness of the order of unity] and considering that for functions of the vari- 
ables x, y the differentiation operators 8/8x i become 8/8x a + (i/e)8/Sya when a = i, 2 and 

become (i/E)8/Sy 3 when i = 3, we obtain the following 

5 ~ m (m) ~ (k) , n  (m)ok-: , ,J~) ld ~ e ~e Oia e lPi,~zx -'~ o Oij o ~i , j yJ  

p RI 

(m = --3, --2, ..., k = 0, 1 .... ). The symbols ,~x and ,jy denote differentiation with 
respect to x~ and yj, respectively. Here and below, the Greek-letter subscripts take val- 

ues of 1 and 2, while the Roman-letter subscripts take values of i, 2, 3. 

Note 2. In the variables y = x/e, the cell PE becomes a cell PI = (i/c)Pe of fixed 
size. 
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Insertion of (4), (6) into governing relations (3), with allowance for the above dif- 
ferentiation rule, yields the equality [3] 

~(~) , , ( ~ + 3 )  - ( ~ + ~ )  ( m  = - -  3 ,  - -  2 ,  . . ) .  ( 8 )  o = %h~ ~Y) uh,~ + aij~l (y),~,zy 

L e t  us p r o c e e d  t o  t h e  a n a l y s i s  o f  (7 )  and ( 8 ) .  We w i l l  do t h i s  by s t u d y i n g  t h e  p rob lem 
w i t h  d i f f e r e n t  k and m and a s u i t a b l y  chosen  t e s t  f u n c t i o n  v in  ( 7 ) .  

A. IWe take k = O, i.e., w has the form w :w(~ ~ V [I] (in (4), (5), uO) ---- vO), 
u(2) ----- vO)!, etc. ). By virtue of the fact that w i,jy = 0 for the given function, inequality (7) 

is written in the form 

S 8m+l(~io~(m' . (O)uyr O~x ~ - -  80, ~ <~(0)>,~ ~ > - -  S gb+lfw(O) dv 

(m = -3, - 2  . . . .  ) for all w(~) e V. 

Note 3. The functions ic (m) t~i~ Ix, x/e)ioscillate rapidly with regard to x in the second 
position. In connection with this [3], 

lira S ~!$> (x, x /e)d~ = 5 <(~>> (x)  dx, 

l g 
J dy. is the mean over the cell P~ in the variables y. where  <'> = mesSxp i 

Then w i t h  a l l o w a n c e  f o r  t h e  f a c t  t h a t  w ( ~  and t h a t  V i s  a s p a c e ,  e x p r e s s i o n  (9)  
g i v e s  t h e  f o l l o w i n g  ( t h i s  c a s e  was examined  in  g r e a t e r  d e t a i l  in  [ 1 ] )  

, ~  m = - -  3 < o ! = ' > > , =  = O,  

. ~  m = - -  2 < d : ' ) > , =  = o, 

at m-------i /o " ( - I ) \  ,, i~ / , ~  + <gOv = < / 0 .  

(1o) 

In obtaining (i0), we assumed that b = - 1 and a 

over the free (lateral) surfaces y of the cell PI. 
terms with nonpositive powers of s. 

B. Now we take k = 1 in (7) and we write the test function in the form 

w = ~w<~)~, y )  = ~y~vo&), Vo ~ v 

i.e., u (~ = v(~ vO) = u O) ~ y3Vo~), U (~) = v(~),etc. We obtain 

' fdy is the mean = O. Here, <'>v -- mess I 
? 

In deriving (i0), we equated only those 

(11) 

S | m+2~(m),,, m + l ~ ( m ) ~  . I d v  
t ~ '~'~0~ td3woi,o~x -~ ~3 o l j  u 3 j , C " O i ]  - -  

We represen t  the moments as ~,.~ = mess I~'I" 

ga+1 <gy3Vo> Y ~ ~ -- ~ 8b+2fg3V 0 dr. 

[3]. By virtue of the fact that v0~ ) 

(12)  

V, with V being a space, we obtain the following from (12) for nonpositive powers of e 

a t [  ~ = - -  3 - -  ~[i ~!-3) ~, ~ , ~  + <~ -~ )>  = o, <~!;~>> = o; ( 1 3 )  
( 2 )  

atl m = -- 2 -- Milax + <o~3')> = O. (14) 

Note 4. At b = -i, a = 0, the surface gag and body ebf forces make no contribution 
in (14). Terms corresponding to them may appear for other values of a, b. 

C. Now let us examine a local problem which arises when we put m -- -3 and k = 1 in 
(7) and choose the test function in the form w = ew (I) (y) (w is a function on S I which is 
periodic with respect to Yl and Y2 and for which wi,~x (1) = 0): 
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--1 (--3) ,(1) ~ u 8 Oii l ~ i , ~ y d u ~ O  for any ~ [ .  
~: (15) 

We recall that wO)= u(:) -- v(~). We take Eq. (8), which at m = -3 takes the form o{7 a)= 
( .  (o) (1) a~j~rz ,yjuh,~=+ao~z (y) u~a,v, and insert it into (15). Since the periodicity of the functions 

causes integration over ~: to reduce to integration over P: (see Note 3), we have 

S a{Ta) (u(1) - -  v(')):'JY dy > 0 for any v (1) ~ M; (16)  
Pl 

(o) ~ (1) 
~17 ~) = ~ z ~ v ~  (.(o)) + ~ j 3 ~ , ~  + < s < ~ ,  (17)  

where u176 = (I/2)(u~,~x (~ + u~,~x(~ are the mean strains (i.e., the corresponding 

averaged displacements u (~ in the plane of the plate. Problem (16) is a cellular problem 

(on the cell P:) of "zeroth order" in the sense of [3]. 

In the study of the linear problem in [3], an important role was played by the fact 
that the solution could have been obtained in the explicit form of a cellular problem with 

, (0) t h e  a b s o l u t e  t e rm  ai~ao~.a,<z. ( 1 7 ) .  The p ro b l em  i s  n o n l i n e a r  in  t h e  g i v e n  c a s e  and no s o l u -  
t i o n  i s  found  in  e x p l i c i t  fo rm.  Thus ,  t h e  p ro b l em  must  be s o l v e d  by a method d i f f e r e n t  
t h a n  t h a t  u se d  in  [ 3 ] .  We r e p r e s e n t  t h e  s o l u t i o n  o f  p rob lem (16)  as 

= - -  a~Ya a , ~ k x )  �9 ( 1 8 )  

Having i n s e r t e d  (18)  i n t o  ( 1 6 ) ,  we o b t a i n  

O f ~ v(*')~,~dY ~" _(-a)(o) o d y ~ O  - -  ,} Oij U,a,~aaOi~Oj3 
P:  P1 

for any v (l) ~ M. 

for any v(1) ~ M. 

After this, 

This can be rewritten in the form 

(~{73' ( I -- v(O)i,jydy -- 5 :=a(-a)" (o)ua,~x d y ~ O  
Pi Pi  

By v i r t u e  o f  t h e  s econd  e q u a l i t y  in  ( 1 0 ) ,  

(-3), (o) oaa -a,a~(x) dy = mes Sl<o(~a3)) '~a.~x(~ = 0. 
Pi  

(19) takes the form 

.I < 9  ) (~ - v(')~,~ dy > o 
P1 

for any v (1) ~7"~'L 

i t  follows from (19) that 

(19) 

( 2 0 )  

Substitution of u(I), into (17) in accordance with (18) yields 

(o) a u <:) (u <~ < d  ) = :~J~'ff~ (~(~ + : , , , ~ u ~ , ~  + :J~,, ~,,~ = ~ v ~  + 
~ ( o )  _ a . .  ~ ( i )  (o) _ (o) ~(~) 

- -  a : ~ y ~ ( u  ) +aij~zuh,zy. q- aij3o~u3,rxx-y uhlbeh,ly (lij3oclz3,o~x-[- O ~  
(21) 

As a result, having inserted (21) into (20), we have the problem of determining 

o :(:) :(:(:) v(:))~j~dy~>O 
P: ( 2 2 )  

for any v ~I) e M. Variational inequality (22) is similar to that studied in [i] in an 
examination of a body with a system of cracks. The difference is that free surfaces 7 of 

~(1) the cell P: are made subject to the condition (a:jff~y~(u 0) + aijkzu~.l~jnj = 0, (where n is a 
normal to y), rather than to the condition of periodicity with respect to Ys (the conditions 
of periodicity with respect to YI and Y2 remain in force). We will study the function ob- 
tained by averaging (21) over P:: 

(23)  v~ (.(o>) ~ < < : ~  (.(0 9 + ~,~,:G)-= r  (u (~ 
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I' 
[ U(1) ..[ " iS solution ( 2 2 ) ]  . The function (23) gives the governing relations in the plane 
of the plate. Similarly to [i] (the above-noted difference from [i] is not important in 

/of-a)\ the present case), we find that. a) (23) is a hyperelastic law; b) the problem \ is /~= = 
(D~=(~u(0)),=~___01 [see (I0)] with the boundary condition "~)(x)=0 on 8F has a unique (zero) 

solution. As a result, u~](x) =0 (a = i, 2) . From this [see (18)] 

u~ ~) �9 ~ u (~ = - - Y a  ~ ~ , a x + u g ( x )  (a, ~ ---- l ,  2); ( 2 4 )  

u(~ ~> -- ua (x). ( 25 ) 

D. Now we will examine the case m = -2 in (8). Here, 

(2) a [" \/s 
0~7 ~ = a~m (y) u~,a + ~ t ~  ~ , ~ .  

Having inserted the expression for uO), in accordance with (24)-(25) we obtain 

o ~  ~) ~ . (~) . u(O) - 
= ui}hlWh,ly -~ d i ~ a  { - -  Y3 3,~X T ~ } , ~  -it- 

- a 'u  (~) a . u(O)  - ( 2 6 )  
+ ai~aa~a,au ~ i j h l  k ,  l y  ~ ij~(zY3 8,~XO~x ~ -  a i j k o ~ l s  �9 

Now we s e t  m = - 2 ,  k = 2 i n  ( 7 )  and we t a k e  w =  e~w(:)(y) (w i s  a f u n c t i o n  w h i c h  i s  p e r i o d i c  
with respect to YI, Y2). Changing from integration over ~ to integration over PI, by vir- 
tue of the periodicity of the functions in (7) [I] we have 

a-a ,I (-=) '(~) " - -  v(~) ~/" ( 2 7 )  oij u i,~u a y  ~ .  0 for any 
P1 

Insertion of (26) into (27) leads to the inequality 

P1 ( 2 8 )  

Here, we again encounter a situation similar to that discussed in connection with inequality 
(16), due to the nonlinearity of the problem. We proceed as follows. First we introduce 
the function 

l~i -~- "" ~ Y3~io~tt3,ax" 

Having inserted (29) into (28), we obtain 

-- a ij~alta~ta,o~xf~x 
1) 1 

" o ( - 2 ) \  X ( ~  (~ - ~(~))~.j~ dr + m ~  S~ <. ,~ / (7 )  h'~,~ (1) >~ O. 

(29) 

(30) 

The last term in the left side of (30) is equal to zero, in accordance with the second 
equality in (i0). Thus, 

l a l i~zuk , ,u  - -  aii~o:Y~ua,~x~x + a i i ~ o ~ ' ~  (u)} (u  (2) - -  v(2))zjv dy ~ 0 ( 31 ) 
P1 

for any v (e) E M. 

Inequality (31), being a cellular problem of the "first order" in the sense of [3] 
and having a unique solution [i], determines a function which places the solution of cel- 
lular problem (31) in correspondence with the quantities ~a~, Pa~: 

( ? ~ ,  ^ . (0)  x ~ ( 2 )  

By v i r t u e  o f  ( 2 9 ) ,  ( 3 2 )  

u~ ~) = T i  (Y, "l'al~, Pa~) + V36io~u~, (~x" ( 3 3 )  

788 



If we substitute (33) into (26) -which coincides with the result of the substitution of 
~2) (29) into the expression in brackets in (31) -we obtain 

o{~ =) = ais~zTh (y, 7~, P~),z~ -- ao~YaP~ + aijf~o~Tf~o~. 

Averaging (34) over the cell Pz leads to the function 

(7~, Pa~) -~ (~{7 =>) = <a~Jkz~Fh (Y, 7=6, P~),zy - -  a~o~g.~P~ + a~6~7~> ~ E ~  (7~, P~). 

Having m u l t i p l i e d  (34)  by ya and hav ing  a v e r a g e d  t h e  r e s u l t i n g  e q u a l i t y  ove r  Pz,  we f i n d  
that 

M ! ;  = = ( y ,  - 

2 a 

(34) 

(35) 

36) 

Let us write out some of the relations that are obtained. 

(-2) 

[o(-~)h at m = - - t  \ a~ / ,~ - -<ga>v=</a> ;  

while from (14), (35), and (36) we obtain 

From (i0) we have 

37) 

38) 

M(-2) ( 39 ) _ + = 0 ;  

M~{ 2) = A=~ (7~$, p~). (41) 

Here, 7~$ = (i/2)(6~,$x + 65,~x) are the strains in the plane of the plate; p~ = u3,ax~x (~ 

are the curvatures of the plate (more accurately, the curvatures of its limiting surface). 

Boundary Conditions. The boundary conditions follow from the initial boundary condi- 
tions u~(x)= 0 on Fs ~ which assume the following form by virtue of (24){-(25): 

au~ ~ ~ . . . .  
u~ ) (x)=O,  -37(x)  = 0, u , ( x ) = u  2(x) = 0  on ap (42)  

(F is the projection of the region ~E on the plane Oxzx2; it is independent of s). 

Equations (37)-(39) are the equilibrium equations of plate theory; (40) and (41) are 
the governing relations. It can be seen from the above that Eqs. (40)-(41), found on the 
basis of the solution of cellular problems, are nonlinear functions of the strains 7~ and 
curvatures P~8" In this case, (40) describes the properties of the plate in its plane, 
while (41) describes the properties of the plate in bending. 

Note 5. In the absence of unilateral contacts, Eqs. (37)-(41) become the relations found 
in [3] for a solid plate. 

The above-described formal expansion can be substantiated by the methods proposed in 
[1, 2, 61. 

The results obtained here make it possible to derive formulas to calculate the aver- 
aged characteristics of grids, fabrics, etc. It should be noted that the use of the ap- 
proximate method of solving cellular problems described in [7-10] is effective for these 
types of materials. 

I, 

2. 

3. 
4. 
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OPTIMIZATION OF THE STRUCTURE OF A VIBRATION SHIELD UNDER THE INFLUENCE 

OF A CONCENTRATED HARMONIC LOAD 

K. S. Adamova and M. A. Kasnibolotskii UDC 534.11+539.4 

When waves strike the interface between media with different physicomechanical proper- 
ties, a system of reflected and refracted waves is formed in the laminated medium. By 
changing the number, size, and material of the layers, it is possible to control the inten- 
sity of the spectrum of the wave process. There naturally arises the problem of optimizing 
the structure of the laminated medium with different optimization criteria and different 
constraints on the characteristics of the wave process. Several studies [i-5] have examined 
aspects of optimization of the structure of multilayered sound-reflecting shields when the 
materials of the layers are chosen from a certain group. Investigators have examined both 
the case of normal incidence of an acoustic plane wave and oblique incidence. If neither 
the number nor the arrangement of the constituent materials is specified beforehand, then 
the optimization problem is formulated within the framework of the theory of optimum con- 
trol. Pontryagin's maximum principle and variational methods have been used to derive the 
necessary optimization conditions and construct algorithms for numerical calculations. The 
same methods, generalized in [5], have also been used to optimize the design of a freely 
oscillating laminated thick-walled sphere of minimum weight [6], in several problems involv- 
ing the static therm0elasticity of thick-walled spherical vessels [7, 8], and in the design 
of laminated thermal insulation [5, 9, i0] and wave-type electromagnetic filters [2]. In 
each of these studies, the spectral characteristics of the wave process depended on one 
space variable and were described by ordinary differential equations. 

In the present study, we examine the steady vibration of a plane elastic laminated 
shield which is rigidly connected to an elastic half-space and is subjected to a concen- 
trated harmonic load. We need to optimize the structure of the shield so as to minimize 
total wave-energy flux in the half-space. The spectral characteristics of the wave pro- 
cess will depend on two space variables and will be described by partial differential equa- 
tions. By using the Hankel transform [ii] with respect to the radial coordinate, it is 
possible to formulate the corresponding optimization problem for transforms that can be 
described by a system of ordinary differential equations. We obtain the necessary optimiza- 
tion conditions, propose an algorithm, and present examples of numerical calculations. 

i. Formulation of the Problem. We will examine the steady-state vibration of an 
elastic laminated shield of thickness I > 0. The shield is rigidly connected to an elastic 
half-space z > Z, and is subjected to a concentrated harmonic force (see Fig. i). Choosing 
from a finite number of elastic materials, we need to synthesize a laminated shield occupy- 
ing the region 0 ~ z ~ Z. The shield must be designed so as to minimize the total energy 
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